Glutamate-Mediated Extrasynaptic Inhibition Direct Coupling of NMDA Receptors to Ca2+-Activated K+ Channels
نویسندگان
چکیده
NMDA receptors (NMDARs) typically contribute to excitatory synaptic transmission in the CNS. While Ca(2+) influx through NMDARs plays a critical role in synaptic plasticity, direct actions of NMDAR-mediated Ca(2+) influx on neuronal excitability have not been well established. Here we show that Ca(2+) influx through NMDARs is directly coupled to activation of BK-type Ca(2+)-activated K+ channels in outside-out membrane patches from rat olfactory bulb granule cells. Repetitive stimulation of glutamatergic synapses in olfactory bulb slices evokes a slow inhibitory postsynaptic current (IPSC) in granule cells that requires both NMDARs and BK channels. The slow IPSC is enhanced by glutamate uptake blockers, suggesting that extrasynaptic NMDARs underlie the response. These findings reveal a novel inhibitory action of extrasynaptic NMDARs in the brain.
منابع مشابه
A direct comparison of the single-channel properties of synaptic and extrasynaptic NMDA receptors.
The assumption that synaptic and extrasynaptic glutamate receptors are similar underpins many studies that have sought to relate the behavior of channels in excised patches to the macroscopic properties of the EPSC. We have examined this issue for NMDA receptors in cerebellar granule cells, the small size of which allows the opening of individual synaptic NMDA channels to be resolved directly. ...
متن کاملGlutamate transporters regulate extrasynaptic NMDA receptor modulation of Kv2.1 potassium channels.
Delayed-rectifier Kv2.1 potassium channels regulate somatodendritic excitability during periods of repetitive, high-frequency activity. Recent evidence suggests that Kv2.1 channel modulation is linked to glutamatergic neurotransmission. Because NMDA-type glutamate receptors are critical regulators of synaptic plasticity, we investigated NMDA receptor modulation of Kv2.1 channels in rodent hippo...
متن کاملNeuronal Synchrony Mediated by Astrocytic Glutamate through Activation of Extrasynaptic NMDA Receptors
Fast excitatory neurotransmission is mediated by activation of synaptic ionotropic glutamate receptors. In hippocampal slices, we report that stimulation of Schaffer collaterals evokes in CA1 neurons delayed inward currents with slow kinetics, in addition to fast excitatory postsynaptic currents. Similar slow events also occur spontaneously, can still be observed when neuronal activity and syna...
متن کاملHypoxic/ischemic conditions induce expression of the putative pro-death gene Clca1 via activation of extrasynaptic N-methyl-D-aspartate receptors.
The stimulation of extrasynaptic N-methyl-D-aspartate (NMDA) receptors triggers cell death pathways and has been suggested to play a key role in cell degeneration and neuron loss associated with glutamate-induced excitotoxicity. In contrast, synaptic NMDA receptors promote neuronal survival. One mechanism through which extrasynaptic NMDA receptors damage neurons may involve Clca1, which encodes...
متن کاملO 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 31 شماره
صفحات -
تاریخ انتشار 2001